国中数学/国中数学七年级/4-1 二元一次方程式

 3-3 一元一次方程式的应用问题 国中数学七年级
4-1 二元一次方程式
4-2 解二元一次联立方程式 

生活当中,常常会发生两个变数在变动的情形。举例来说:

  • 全班有男生和女生。
  • 使用五元硬币和十元硬币购买商品。
  • 许多地方的收费标准会分为全票与半票。

这个时候,如果只有设一个未知数感觉又不太实际。所以在这一节,我们要介绍由两个未知数所构成的二元一次式,并进一步地介绍二元一次方程式,在4-2 解二元一次联立方程式进一步会去解两个未知数的式子。

二元一次式

编辑

以刚刚举的例子为例:

  • 若班上有 位男学生和 位女学生,则全班有 位学生。
  • 小琪买早餐花了 枚五元硬币和 枚十元硬币,
    1.  枚五元硬币的价值为 元。
    2.  枚十元硬币的价值为 元。
    3. 所以小琪买早餐花了 元。
  • 动物园入园半票每张 元,全票每张 元,雨辰一家人到动物园玩,总共买了 张半票和 张全票,又
    1. 半票每张 元,买 张要 元。
    2. 全票每张 元,买 张要 元。
    3. 所以雨辰一家人的门票费为 元。

以上出现的式子   这种出现两个未知数,而且未知数的次方都是 的式子我们称作二元一次式。
这边要注意一些不是二元一次式的情况:

不是二元一次式的情形
举例
分母出现未知数  
未知数出现在绝对值内   
出现了等号  
未知数的次方不是   
未知数相乘  

二元一次式的名词

编辑

一元一次式类似,以下是二元一次式的常用名词:

名称
说明
 为例子
用加号连接的各部分
因为 ,所以   都称作 的项。
 项与 
有出现一次未知数  的项。
因为 有出现未知数 ,所以  项为 ;因为 有出现未知数 ,所以  项为 
常数项
没有出现任何未知数的项
因为 没有出现未知数,所以 的常数项为 
系数
未知数前面的数字或是常数项
 中,未知数 前面的数字为 ,所以称   项系数;在 中,未知数 前面的数字为    项系数。
单项式
只有单一一个项的式子
 只有一项,所以为单项式。
同类项
具有相同的未知数,而且次方数也相同两个项
  的未知数不相同,所以它们不是同类项;  的未知数相同,次数也都是 ,所以它们是同类项。

小测

编辑

  

1   项系数是多少?(单选)

 
 
 
 

2 哪一个选项的 项系数是 ?(单选)

 
 
 
 

3 哪一组为同类项?(单选)

  
  
  
  

二元一次式的运算

编辑

二元一次式的运算如同一元一次式的运算相同,只是多了一个未知数而已。

  • 二元一次式的加减运算:利用同类项合并去括号规则
    1. 同类项合并:将相同未知数的系数相加(减)。如:  ,本质上为分配律
    2. 去括号规则:括号外为加号,则括号内的运算符号不用改变;括号外为减号,则括号内的运算符号加改减,减改加。如:  [注 1]
  • 二元一次式的系数积:利用分配律
    • 如:
      1.  
      2.  
  • 分数型的运算:通分
    • 如:
      •  

二元一次方程式

编辑

当一个方程式可以整理成 ,其中 为任何数,则我们称这样的式子为二元一次方程式[注 2]
以下是一些例子:

  1.  是二元一次方程式,因为 可以改写成 
  2.  是二元一次方程式,因为 可以改写成 
  3.  不是二元一次方程式,因为 可以改写成 只有出现一个未知数。

注解

编辑
  1. 可以将 想成 
  2. 这是未知数为  的状况。事实上,只要整理过后有出现两个未知数的方程式都是二元一次方程式,但大部分以  为主。