Introducing Julia/Modules and packages
模块与包
编辑Julia代码被组织成文件、模块和包。Julia 代码文件使用 .jl
文件扩展名。
模块
编辑相关函数和其他定义可以组合在一起 并存储在 模块 中。模块的结构如下:
module MyModule
end
在这些行之间,可以放入函数、类型定义、常量等等。
一个或多个模块 可以存储在一个包 中,这些模块使用 git 版本控制系统进行管理。大多数 Julia 包 (包括官方的) 都存储在GitHub上,按照惯例,每个Julia包都以“.jl”后缀命名。
安装模块
编辑要在您自己的机器上使用官方的 (注册的) Julia 模块,您需要从 GitHub 主站点下载并安装包含该模块的包。在 http://pkg.julialang.org 上有一个很大的官方软件包列表。
【译者注:该网站自 2018-08-05 后不再更新, 建议在 https://juliaobserver.com/ 中查找相关包】
To download and install a package, you can use Julia's package manager. Start by typing a right bracket ]
into the REPL to enter the package manager, then use the add
command. You don't have to use quotes or the ".jl" suffix.
julia> ] (v1.0) pkg> add Calculus ... messages (v1.0) pkg>
(If you are not directly connected to the internet, you need to give the name of a proxy before calling the package installer.)
The (v1.0) in the prompt tells you that you're working in the default project, "v1.0", in ~/.julia/environments/.
If you want to update the packages you have, use the up
command:
(v1.0) pkg> up ... messages (v1.0) pkg>
For more information about Julia's powerful package management system, refer to the extensive documentation.
To leave the package manager mode, press the Backspace/Delete key.
Using modules 使用模块
编辑After installation, to start using functions and definitions from the module, you tell Julia to make the code available to your current session, with the using
or import
statements, which accept the names of one or more installed modules:
julia> using Calculus julia>
On success, all the definitions in the Calculus module are available for use. If the definitions inside Calculus were exported by the module's author, you can use them without the module name as prefix (because we used using
):
julia> derivative(sin, pi/2) 0.0
If the package author(s) don't export the definitions, or if we use import
rather than using
, you can still access them, but you have to type the module name as a prefix:
julia> Calculus.derivative(sin, pi/2) 0.0
but that's unnecessary in this example, as we've seen.
When you write your own modules, the functions that you choose to export can be used without the module name as prefix. Those that you don't export can still be used, but only if they are prefixed with the module name. For example, in the module called MyCoolModule
, the mycoolfunction()
was exported. So the prefix is optional:
julia> using MyCoolModule julia> MyCoolModule.mycoolfunction() "this is my cool function" julia> mycoolfunction() "this is my cool function"
Inside the module, this function was exported, using the export
statement:
module MyCoolModule
export mycoolfunction
function mycoolfunction()
println("this is my cool function")
end
end
using 和 import
编辑import
与 using
相似, 但在一些地方不同。例如 如何访问模块中的函数。下面是一个 有两个函数的模块,其中一个函数被导出(export):
module MyModule
export mycoolfunction
function mycoolfunction()
println("this is my cool function")
end
function mysecretfunction()
println("this is my secret function")
end
end
使用 import
来导入模块:
julia> import MyModule julia> mycoolfunction() ERROR: mycoolfunction not defined julia> MyModule.mycoolfunction() "this is my cool function"
注意 mycoolfunction()
函数 只有 在使用模块前缀时才能访问。这是因为 MyModule 模块是通过 import 加载的,而不是用 using.
类似地,对于 mysecretfunction()
函数:
julia> mysecretfunction() ERROR: mysecretfunction not defined julia> MyModule.mysecretfunction() this is my secret function
(用 using)可以指定一系列模块:
julia> using Color, Calculus, Cairo
另一个重要的区别是 想要修改或扩展另一个模块中的函数时。不能使用 using
,必须 import
特定的函数。
Include
编辑如果要使用模块中未包含的其他文件中的代码,请使用 include()
函数。
这将会在当前模块中执行其他文件的内容,根据相对路径对该文件进行搜索。就像你把代码贴进去一样。
这对于从许多较小的文件中构建代码非常有用。
Julia如何查找一个模块?
编辑Julia 在 LOAD_PATH 变量中定义的目录中查找模块文件。
julia> LOAD_PATH 3-element Array{String,1}: "@" "@v#.#" "@stdlib"
要使其在查找其他路径,请使用 push!
添加内容:
julia> push!(LOAD_PATH, "/Users/me/myjuliaprojects") 3-element Array{String,1}: "@" "@v#.#" "@stdlib" "/Users/me/myjuliaprojects"
And, since you don't want to do this every single time you run Julia, put this line into your startup file ~/.julia/config/
startup.jl
, which runs each time you start an interactive Julia session.
Julia looks for files in those directories in the form of a package with the structure:
ModuleName/src/file.jl
Or, if not in Package form (see below), it will look for a filename that matches the name of your module:
julia> using MyModule
and this would look in the LOAD_PATH for a file called MyModule.jl and load the module contained in that file.
Packages
编辑要查看已安装的所有软件包,请执行以下操作:
julia> ] (v1.0) pkg> status Status `~/.julia/environments/v1.0/Project.toml` [c7932e45] AstroLib v0.3.0 [9e28174c] BinDeps v0.8.8 [159f3aea] Cairo v0.5.2 [49dc2e85] Calculus v0.4.0 [3da002f7] ColorTypes v0.6.7 [5ae59095] Colors v0.8.2 [861a8166] Combinatorics v0.6.0 [34da2185] Compat v0.68.0 [864edb3b] DataStructures v0.8.3 [5789e2e9] FileIO v0.9.0 [53c48c17] FixedPointNumbers v0.4.6 [28b8d3ca] GR v0.31.0 [a2bd30eb] Graphics v0.3.0 [9fb69e20] Hiccup v0.2.1 [a4bce56a] Iterators v0.3.1 [e5e0dc1b] Juno v0.4.1 ... messages ... (v1.0) pkg>
包的结构
编辑Julia 用 git 来组织和管理包。按照惯例,所有包都存储在git储存库中,后缀为“.jl”。因此 Calculus 包存储在名为 Calculus.jl 的 Git 存储库中。以下是根据磁盘上的文件组织Calculus软件包的方式:
Calculus.jl/ # this is the main package directory for the Calculus package
src/ # this is the subdirectory containing the source
Calculus.jl # this is the main file - notice the capital letter
module Calculus # inside this file, declare the module name
import Base.ctranspose # and import other packages
export derivative, check_gradient, # export some of the functions defined in this package
...
include("derivative.jl") # include the contents of other files in the module
include("check_derivative.jl")
include("integrate.jl")
end # end of Calculus.jl file
derivative.jl # this file contains code for working with derivatives,
function derivative() # and is included by Calculus.jl
...
end
...
check_derivative.jl # this file concentrates on derivatives,
function check_derivative(f::...) # and is included by "include("check_derivative.jl")" in Calculus.jl
...
end
...
integrate.jl # this file concentrates on integration,
function adaptive_simpsons_inner(f::Funct # and is included by Calculus.jl
...
end
...
symbolic.jl # concentrates on symbolic matters; included by Calculus.jl
export processExpr, BasicVariable, ... # these functions are available to users of the module
import Base.show, ... # some Base functions are imported,
type BasicVariable <: AbstractVariable # ... so that more methods can be added to them
...
end
function process(x::Expr)
...
end
...
test/ # this directory contains the tests for the Calculus module
runtests.jl # this file runs the tests
using Calculus # obviously the tests use the Calculus module...
using Base.Test # and the Base.Test module...
tests = ["finite_difference", ... # the test file names are stored as strings...
for t in tests
include("$(t).jl") # ... so that they can be evaluated in a loop
end
...
finite_difference.jl # this file contains tests for finite differences,
@test ... # ... its name is included and run by runtests.jl
...
标准库
编辑Base
模块和 Core
模块在 Julia 中是一直可用的。
Julia 还自带一些标准模块,也叫标准库 stdlib
。它们在 Julia 安装时一并安装了,但并没有在 Julia 启动时自动加载。
如果你想用某个标准库,但它没有被自动加载,只需要像加载普通库一样使用 using
或 import
加载它就行了。
以下模块是 Julia 1.x 版本附带的标准库(stdlib
)
Base64 | 编码、解码 Base64 字符串 |
CRC32c | 计算 CRC-32c 校验和 |
Dates | 处理时间和日期 |
DelimitedFiles | 提供 readdlm() 和 writedlm() 等函数读写分隔符文件
|
Distributed | 与集群上的众多机器一起工作 |
FileWatching | 监测文件和文件夹的改动 |
Future | 实现了一些新功能,它们可能会在后续版本中取代现有的函数 |
InteractiveUtils | 辅助内省(introspection)函数(通常和 REPL 一起加载) |
Libdl | 动态链接器 |
LibGit2 | Git 库的绑定 |
LinearAlgebra | 线性代数函数 |
Logging | 记录计算的历史 |
Markdown | Markdown 格式转换支持 |
Mmap | 处理内存映射的数组(memory-mapped arrays) |
Pkg | 管理包的安装与删除 |
Printf | C 风格的 printf 格式化
|
Profile | 性能测试工具 |
Random | 产生随机数 |
REPL | Julia 的交互式命令行工具(REPL) |
Serialization | 读写 julia 的数据 |
SHA | 提供 SHA 支持 |
SharedArrays | 共享数组 |
Sockets | TCP 套接字支持 |
SparseArrays | 比稠密数组更节约空间的稀疏数组 |
Statistics | 基本的统计函数: std , cor , var , cov , mean , median , quantile ,
|
SuiteSparse | 稀疏数据结构 |
Test | 测试工具 |
Unicode | Unicode 工具 |
UUIDs | 产生 UUID |