方程的定義

編輯

古漢語中方程的意思

編輯

「方程」一詞最早出於《九章算術》(可能更早的書籍也有記載,但這些書籍或許在秦皇焚書時化為灰燼、或許在戰亂時不見蹤影、或許被某些有心人埋藏在地、或許……)。「方程」的本意是「方而程之」;「方」就是把問題的各個條件按位置分開放,「程」就是對分開的條件再加以處理(參見[s:九章算術#卷第八_方程|九章算術的方程章節]])

現代教科書中常用的定義

編輯

現代教科書一般把方程定義為:「含有未知數的等式」。

比較完備的定義

編輯

方程是含有未定元(可以是實數、可以是函數表達式、可以是矩陣、可以是……、可以是集合論中任意集合的未定元素)的等式。

代數方程

編輯

方程的概念 含有未知數的等式叫方程 使方程中等號左右兩邊相等的未知數的值,叫做這個方程的解. 求一個方程的解的過程叫解方程.

一元一次方程

編輯

  這樣,只含有一個未知數,並且未知數的次數都是1,這樣的方程叫做一元一次方程.

一元二次方程

編輯

以x為未知數的二次方程的一般式是 ,其中a≠0,且a、b及c均為實數。

分式方程與無理方程

編輯

線性方程組與行列式

編輯

微分方程

編輯

差分方程

編輯

解方程

編輯

例: 

解:

移項,得 

合併同類項,得 

符合原式:36−5 = 31


例:

{36x+11=11x+36•••(1)
2(37x+y) =36•••(2)


解:

 

 

 

 

 

 

 

方程解應用題

編輯

例:桌上有葡萄和蘋果兩種水果,總數比蘋果的3倍多3個,蘋果有11個,此時小美吃掉11個葡萄。問:葡萄剩幾個?

解:設原本水果總共 個。

 

 

原本葡萄數量為 個,小美吃掉11個葡萄後,葡萄剩下 個。


例:小明走一段長500米的路,走了5分鐘,求小明走路速度。

解:設小明走路速度為每分鐘走 米。

 

 

答:小明走路的速度為100米/分鐘。