三角函数/5倍角公式
公式
编辑sinα=y,cosα=x
- sin5α=16y5-20y3+5y
- cos5α=16x5-20x3+5x
证明
编辑cos5α=cos(3α+2α)=cos3α×cos2α-sin3α×sin2α=(4x3-3x)(2x2-1)-(3y-4y3)(2xy)
- =8x5-4x3-6x3+3x-2x(3y2-4y4)=8x5-10x3+3x-2x[3(1-x2)-4(1-x2)2]
- =8x5-10x3+3x-2x[3-3x2-4(1-2x2+x4)]=8x5-10x3+3x-2x[-1+5x2-4x4]
- =8x5-10x3+3x+[2-10x3+8x5]=16x5-20x3+5x
sin5α=sin(3α+2α)=cos3α×sin2α+sin3α×cos2α=(4x3-3x)(2xy)+(3y-4y3)(1-2y2)
- =(4x2-3)(2x2y)+8y5-4y3-6y3+3y=[4(1-y2)-3]×2(1-y2)y+8y5-10y3+3y
- =[4-4y2-3](2y-2y3)+8y5-10y3+3y=[1-4y2](2y-2y3)+8y5-10y3+3y
- =8y5-10y3+2y+8y5-10y3+3y=16y5-20y3+5y
求值
编辑令 sinα=y,cosα=x
(一)五倍角之正弦、余弦值等于一倍角
编辑x=16x5-20x3+5x
0=16x5-20x3+4x=4x(4x4-5x2+1)
- =4x(4x2-1)(x2-1)
- =4x(2x+1)(2x-1)(x+1)(x-1)
x=0,±½,±1,∴±90°,±60°,0°的cos5α=cosα
同理,
y=0,±½,±1,∴0°,±30°,±90°的sin5α=sinα
(二)五倍角之正弦、余弦值等于负一倍角
编辑-x=16x5-20x3+5x
0=16x5-20x3+6x=2x(8x4-10x2+3)
- =2x(4x2-3)(2x2-1)
- =2x(2x+√3)(2x-√3)(√2x+1)(√2x-1)
x=0,±√3/2,±√2/2,∴±90°,±30°,±45°的cos5α=-cosα
同理,
y=0,±√3/2,±√2/2,∴0°,±60°,±45°的sin5α=-sinα
(三)五倍角之正弦、余弦值等于 1
编辑1=16x5-20x3+5x
0=16x5-20x3+5x-1=(x-1)(16x4+16x3-4x2-4x+1)
- =(4x2+2x-1)2(x-1)
x=1, ,∵0°,72°,144°的cos5α=1∴cos72°= ,cos144°=
∴sin18°=cos72°= ,sin54°=cos36°=-cos144°=
∴sin36°=cos54°=√1-sin254°=
∴sin72°=cos18°=√1-sin218°=
同理,
1=16y5-20y3+5y
y=1, ,∵90°,18°,-54°的sin5α=1∴sin18°= ,sin-54°=
∴sin18°=cos72°= ,sin54°=-sin-54°=
(四)五倍角之正弦、余弦值等于 0
编辑0=16x5-20x3+5x=x(16x4-20x2+5)
x2= =>x=
∵90°,18°,54°,126°,162°的cos5α=0,
∴cos18°= 、cos162°= 、cos54°= 、cos126°=
同理,
0=16y5-20y3+5y=y(16y4-20y2+5)
y2= =>y=
∵0°,±36°,±72°的sin5α=0,
∴sin72°= 、sin-72°= 、sin36°= 、sin-36°=