回到总目录
设函数f(x,y)在区域D内有定义,且点( x 0 {\displaystyle x_{0}} , y 0 {\displaystyle y_{0}} )是该区域的聚点。 ∀ ε > 0 {\displaystyle \forall \varepsilon >0} , ∃ δ {\displaystyle \exists \delta } ,对于 ( x , y ) ∈ D {\displaystyle (x,y)\in D} ,在一下情况下:
满足:
则称C是函数f(x,y)在点( x 0 {\displaystyle x_{0}} , y 0 {\displaystyle y_{0}} )的二重极限。 记作:
若函数f(x,y)在点( x 0 {\displaystyle x_{0}} , y 0 {\displaystyle y_{0}} )的某个邻域内满足:
则称函数f(x,y)在点( x 0 {\displaystyle x_{0}} , y 0 {\displaystyle y_{0}} )处连续。
1.若函数f(x,y)可微,且x= ϕ {\displaystyle \phi } (t),y= φ {\displaystyle \varphi } (t)都对t可导,则复合函数f( ϕ {\displaystyle \phi } (t), φ {\displaystyle \varphi } (t))也对t可导,且满足:
2.若函数f(u,v)可微,且u= ϕ {\displaystyle \phi } (x,y),v= φ {\displaystyle \varphi } (x,y)都对t可导,则复合函数f( ϕ {\displaystyle \phi } (x,y), φ {\displaystyle \varphi } (x,y))也对(x,y)存在偏导数,且满足: