逻辑学导论/无矛盾律 排中律

 逻辑学导论/逻辑及其分类 逻辑学导论
无矛盾律 排中律
同一律 充足理由律 

你听说过“自相矛盾”的故事吗?故事中的楚国商人声称自己的矛可以戳穿所有的盾,又声称自己的盾不会被任何矛戳破。为什么楚国商人的话是荒谬的呢?我们怎么才能避免“自相矛盾”呢?通过无矛盾律排中律的学习,相信你会有自己的答案。

无矛盾律编辑

还记得本课开头的故事吗?我们可以把它归纳为两个判断(命题):

例1

我的矛可以刺穿我的盾;

我的矛无法刺穿我的盾。

显而易见,这两个判断相互矛盾,不可能同真(即都是真的),其中必有一个是错误的。 再看另外两个判断:

例2

我今天吃饭了;

我今天没吃饭。

这两个命题犯的还是同样的错误。

综上所述,我们可以得出结论:在同一思维过程中,在同一时间、同一方面,对同一对象形成的有矛盾关系的判断,不可能同真,其中必有一假这就是无矛盾律,又称矛盾律不矛盾律。用符号,可表达为 为真( 符号 ' ' 读作“非”,  读作“或”,  读作“与”)。用公式,可表示为“A必不非A”。

例3

辛亥革命既是成功的,又是失败的。

例3的内容看似违背了无矛盾律,但实际上并没有。在应用无矛盾律时,我们要注意,对一种事物固有的矛盾二重性的判断,并不违背无矛盾律。

排中律编辑

例4

张三的行为既不违法,又不合法。

例5

盐酸既不是混合物,也不是纯净物。

你发现例4和例5的荒谬之处了吗?张三的行为要不然违法,要不然合法,不可能既不违法又不合法;一种物质要不然是混合物,要不然是纯净物,因此盐酸不可能既不是混合物也不是纯净物(实际上,盐酸是混合物)。例4和例5对两个有矛盾关系的判断都否定,持“两不可”的态度,这显然是荒谬的。由此我们可得出结论:在同一思维过程中,在同一时间、同一方面,对同一对象形成的有矛盾关系的两个论断,不可能同假,其中必有一真。这就是排中律。也可表示为对于命题  为真。用公式表示为“A必不非A”。它告诉我们要有明确的思维,不能“脚踏两只船”。

例6

A:今天下棋你赢了吗?

B:我没赢。

A:那你输了吗?

B:我也没输。

例6看起来违反了排中律,但它可能是对的。输和赢并非非黑即白的矛盾关系,在它们之间,还存在着平局等情况。这种情况下,A不应强求B在两种情况间做选择。

思考题编辑

指出下列判断是否错误,并说明原因。

例8

这道题我既做对了,又做错了。

例9

王水既不是单质,也不是化合物。

例10

a既不是有理数,也不是无理数。

例11

埃隆·马斯克既是美国公民,又是加拿大公民。

例12

这种生物既不是真核生物,也不是原核生物。

外部链接编辑

维基百科中的相关条目:
维基百科中的相关条目: